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Abstract. The standard Mixing Length Theory, MLT, treats
turbulent eddies as if they were isotropic, while the largest eddies
that carry most of the flux are highly anisotropic. Recently, an
anisotropic MLT was constructed and the relevant equations
derived. In this paper, we show that these new equations can
actually be cast in a form that is formally identical to that of the
standard isotropic MLT, provided the mixing length parameter,
derived from stellar structure calculations, is interpreted as an
intermediate, auxiliary function «(x), where x, the degree of
anisotropy, is given as a function of the thermodynamic variables
of the problem. The relation between o(x) and the physically
relevant o (I = « A,) is also given. Once the value « is deduced, is
found to be a function of the local thermodynamic quantities, as
expected.
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1. Introduction

The Mixing Length Theory, MLT, suffers from two well known
problems. The first problem is that the mixing length /is not given
by the theory itself and is thus usually written as

I=oH,, M

where H,,is the pressure scale height and « a free parameter. Stellar
structure calculations yield a global value of « throughout the
entire convective region of around

a=1-2 )

rather than a variable local value as it might be expected. This
problem has motivated proposals for more complete mixing
length models none of which is however immune from contradic-
tions (for a recent review, see Renzini, 1987). Earlier attempts to
formulate an expression for / from first principles (Roxburgh,
1978) have also been criticized (Baker and Kuhfuss, 1987). Thus, it
seems fair to say that a consistent expression for the mixing length
[ is not yet available and that a global value of « is difficult to
understand physically.

A second problem, which however has received considerable
less attention, is that the MLT assumes that all length scales
entering the problem are equal to a mixing length I, while a realistic
model ought to account for the fact that the large eddies that carry
most of the flux are in general anisotropic, i.¢., their characteristic
width /, and height /, need not be identical.

Recently, the second problem was dealt with (Canuto, 1989;
cited as AMLT) and an anisotropic mixing length model proposed
which yields the expressions for the convective flux and velocities
for an arbitrary degree of eddies anisotropy x, where

x=L/E. &)

In this paper, we shall point out a new feature, namely that the
AMLT equations can actually be formally written as the standard
MLT expressions provided the mixing length parameter derived
from stellar structure calculations is interpreted as « (x), as shown
below. An expression for the physically meaningful « is then
derived and shown to depend on the local thermodynamic
quantities.

2. The expression for o

Once an expression for the turbluent convective flux £, is adopted,
one derives an expression relating V — V4, ¥, — V,4 and the local
variables represented by a dimensionless variable U, see Eq. (6b)
(Cox and Giuli, 1968, use the variable 4, where 2 U4 = 1). This
relation is a cubic equation for the auxiliary function &

62=U2+V_‘Vad (4)

or equivalently, the convective efficiency 2 "= &¢/U — 1.

In the AMLT paper it was shown that even in the presence of
an arbitrary degree of anisotropy, the relation yielding ¥ — V4 is
still a cubic equation formally identical to the cubic relation of the
standard MLT, i.e.,

@ -U@P+E@x) U -V (x)=Ux) (7, =V, =0, (5)
where the parameter U has become a function U (x) given by

Ux)=8Y29) x 2 1+ x)** U, (62)
where the MLT parameter U is defined as (Kippenhahn, 1963)
U=246T3(c,@* k17" 2 H/9)'*. (6b)

The fact that the basic cubic Eq.(5) has retained its formal
MLT structure even in the presence of an arbitrary degree of
anisotropy x, suggests an interesting interpretation. Combining
(6), we can write

U)=(/1x)* U, M
where (for x> 1)
1(x)=(3/8") (1+x)~121. @®
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It is easy to see that the introduction of the quantity /(x) formally
transforms the anisotropic problem into an isotropic one. Since by
definition / =1,, substituting / from (8) into (3) and considering
large x’s, we obtain /, = /(x) =/, (x), i.e., we formally recover an
isotropic eddy.

It follows that one need not actually solve the full AMLT
equations. Rather, one can solve the cubic equation of the
standard MLT model provided that the parameter determined
from stellar structure calculations is interpreted as

a(x), ®

since in the expression for U(x) one must write

[{x)=a(x) H, (10)
which, together with (8) then yields
a(x) =GB (1+x) 1" q. 1

Which of the two «’s is the one physically relevant? Since o is
related to the only physical length off the problem, i.e.,
I=1,=aH,, it seems that « rather than «(x) is the physically
meaningful quantity since it measures the degree of stretching of
an eddy in the z direction (in units of /), while the quantity « (x)is
a convenient mathematical parameter referring to an (idealized)
isotropic situation. Since stellar structure calculations indicate
that

a(x)=1-2, (12)
we shall write
a=0,(1+x)2, ay=8"ua(x)3~1 (13)

which yields an expression for o which depends on the local
variables once a model for x is given.

3. Two models for x

Asinthe AMLT paper, we suggest that the degree of anisotropy x
be determined by maximizing the rate » (k) at which energy is
injected into the system so as to keep turbulence from decaying.
Explicitly, we shall write

d

’(E ns(x’ Vs X*):O, (14)
where the rate », is given by the dispersion relation

(h+ v, k%) (n+ 1, k) =gofpx (1 +x)71 (15)

withof = H; ' (V — V,9). In (15), v, and x,, represent an effective
viscosity and an effective thermometric conductivity. Further-
more, the maximization (14) is carried out at the lower wavenum-
ber k =k, = (n/d) (1 + x)/2.

We shall now discuss two models which differ in the treatment
of v, and yx,.

3.1. First model: weak turbulence
In the first model, it is assumed that

V=V, X=X (16)

where v and y are the molecular values. Since in the cases of
interest in stellar structure studies the viscosity v is considerably
smaller that y, v is usually neglected. This is the approximation

*
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Table 1. The parameter « as a function of S, for weak (W) and
strong (S) turbulence. In the first case, see Eq. (20). In the second
case, Eq. (29) gives an excellent approximation

s, a(S)  a(W)
103 0.934 1.381
316103 0.963 1.673
10% 1.009 2.294
316 10 1.063 3.016
105 1.127 3.992
3.16 105 1.202 5.268
106 1.287 7.050
3.16 105 1.382 9.386
107 1.488 12.51
316107 1.604  16.67
108 1729 22.23
316 105 1.864  29.64
10° 2.00 39.52
316 10° 2164  52.69
1010 2329 7027
316 101 2507 93.68
1o 2.695  124.95
316 1011 2.897  166.59
1012 3113 2222

adopted in the standard MLT as well asin the AMLT. In this case,
the result of (14) is given by Eq. (40) of the AMLT paper which we
shall rewrite as

dx—D(x+1)P°=S, (17a)
S=@1/8) U 2(V -V, . (17b)
Substitute now x from (17a) into (13). Considering that
U=a"20,, (18)
where

U,=240T> (¢, 0* k H2) ™' (2H,/g)'/? (19a)
S,=(81/8) U2 (V —V,9) (19Yb)
we finally obtain

a =1+ (1 +af S,/ 32 (20)

Values of a are listed in Table 1. For large values of S, Eq. (20)
gives, with o, =272 o

a=0, SI*. 1)

3.2. Second model: strong turbulence

Since the most distinguishing feature of turbulence is its ability to
greatly enhance all transport properties over their molecular
values, it is clear that the approximation (16) cannot hold truein a
fully turbulent regime. Its validity is limited to a regime near the
inception of turbulence, i.e., not far from the laminar regime.
However, since we need to describe a fully developed turbulent
regime, as the one that attains in the convective regions of stars
where the equivalent of the Reynolds number is extremely large, a
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better representation for v, and y, is required. As customary in
theory of turbulence, we shall write

Ve=V+ Y X*=X+Xz, (22)

where v, and y, represent the renormalization of the molecular
values due to the presence of turbulence. Ordinarily, v, > v and
x> x- The expressions for the turbulent viscosities and conduc-
tivites can be obtained once the energy spectral function E (k)
characterizing the turbulent regime is known. In fact (Canuto et
al., 1987)

vy =024y [ K72 ER) 42, @3)

where the integration limits are k, which depends on x, and
infinity. The numerical coefficient y is related to the Kolmogoroff
constant Ko by the relation y=(2/3Ko)>. An analogous ex-
pression holds for the turbulent conductivity with y — &=1/3.
Taking E (k) to be of the Kolmogoroff type E (k) = Ko £2/3 k=53,
the integration can easily be performed. The important fact is that
&, the energy per sec per gram fed to the largest eddies by the
external source, is related to the convective flux F, since one can
show that (Canuto et al., 1987)

e=gaf®, F =c,0bx?®, 24
where, see AMLT Eq.(A14),
o=+ D1, Y=UTPHF V. (29

The net result is that v, resulting from (23) is a rather
complicated function of the two variables x and S,

v=v(x,S). (26)

An analogous expression holds for x,. Inserting (26) into (22) and
then into (15), one can solve for n, which can then be used in (14).
The resulting x = x (S) relation is given by complicated algebraic
expressions of no direct interest. We have numerically solved these
expressions and then fitted the x = x (S) values. The final result is
(with a Kolmogoroff constant Ko = 1.65, x, =1.21)

x=1+8(32+488% + x5! §o10)~1 27)

to be contrasted with the weak turbulence case given by Eq. (17a).
As before, substituting x from (27) into (13) and recalling that

S=a*S, (28)

we obtain the final expression for « in terms of S,. Numerical
results are presented in Table1. As one can notice, the vastly
different results between the weak and strong turbulence cases are
a clear indication of the different regimes of validity of the two
models for x, i.e., near the transition to turbulence and a fully
developed turbulent regime. For large values of S, the strong
turbulence results can be represented by the simple expression,

o, = (0t Xo/*)**

— 1/16
a=a, S,

29

to be contrasted with the weak case, Eq. (21).

The values of Table 1 and the representation given by Eq. (29)
represent our main result expressing o in terms of local thermody-
namic variables.

Finally, one would expect the degree of anisotropy x to be far
larger in the unrenormalized, weak turbulence case than in the
strong turbulence regime since the presence of strong non-linear
interactions is expected to break up incipient, largely anisotropic,
eddies. This results is indeed borne out by the above formulae
since

Weak turbulence: xS+,

Strong turbulence: x= S0 (30)

which shows that the degree of anisotropy is considerably less in
the strong turbulence regime than in the weak case.

4. Conclusions

In a previous paper, we constructed a mixing length theory valid
for an arbitrary degree of anisotropy. In this paper we show that
basic relation between V —V,q, V—V, and U (i.e., the local
variables) has retained the same formal expression as in the
ordinary isotropic MLT, i.e., Eq. (5), provided the mixing length /
is interpreted as /(x), the two being related by Eq.(8). This
reinterpretation has two effects: first, one can formally use the
MLT formalism provided that the « so derived is identified with
o (x), a function related to o by Eq. (11). Once a value of a(x) is
obtained from stellar structure calculations, Eq. (11) can be used
to construct a physical « which is now a local variable. The results
for the cases of weak and strong turbulence are given by Egs. (20)
and (29) respectively.

Alternatively, one can say that the MLT correctly computes a
global quantity « (x) representing an idealized isotropic turbulent
regime, but then incorrectly identifies it with the physical & which is
expected to depend on the local variables. The basic assumption
underlying the MLT, i.e., isotropy in the eddies spectrum, clearly
precluded the differentiation between o and a (x).
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